Crystallographic disorder in mixed-valent dioxo-bridged $\mathrm{Mn}^{\mathrm{III}, \mathrm{IV}}$ complexes. $\left[\mathrm{Mn}_{2} \mathrm{O}_{\mathbf{2}}(\mathrm{bpy})_{4}\right]$ $\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right] .5 \mathrm{H}_{2} \mathrm{O}$

D. Ramalakshmi and M. V. Rajasekharan*
School of Chemistry, University of Hyderabad, Hyderabad 500046, India. E-mail: mvrsc@uohyd.ernet.in

(Received 13 January 1998; accepted 7 September 1998)

Abstract

The structure of tetrakis($2,2^{\prime}$-bipyridine)di- μ-oxo-dimanganese(3+) hexanitratocerate(3-) pentahydrate, $\left[\mathrm{Mn}_{2} \mathrm{O}_{2}(\text { bpy })_{4}\right]\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$, is described; $M_{r}=$ 1368.88, monoclinic, $C 2 / c, a=12.940$ (3), $b=$ 18.060 (2), $c=22.54$ (1) А $\stackrel{\circ}{ }, \quad \beta=96.29(2)^{\circ}, \quad V=$ $5237(3) \mathrm{A}^{3}, T=132 \mathrm{~K}, Z=4, F(000)=2752, D_{x}=$ $1.736 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \mu=1.429 \mathrm{~mm}^{-1}$, $R\left(F^{2}\right)=0.0358, w R\left(F^{2}\right)=0.0783$ for 4877 reflections with $I>2 \sigma(I)$. The cation does not have crystallographically distinguishable Mn atoms. An analysis of the atomic displacement ellipsoids and $\mathrm{Mn}-\mathrm{N}$ bond distortions has been used to develop a model for the disorder in this type of mixed-valent complex. The anion, $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}^{3-}$, has a distorted icosahedral geometry.

1. Introduction

Mixed-valent metal complexes are generally classified as class I, class II or class III compounds (Robin \& Day, 1967). This scheme may be clarified with reference to a dinuclear metal complex $M_{A} M_{B}$ (ligands not shown). The term 'mixed valence' is used when the metal ions M_{A} and M_{B} are of the same element but differ in their formal oxidation states, most commonly by unity. In class I compounds the extra electron is localized on one of the metal sites, while in class III compounds the electron is fully delocalized over the two sites. In class II compounds, which are an intermediate case, there is partial electron delocalization which may lead to temperature-dependent hopping of the electron between the two sites. Class I and class II compounds are expected to have distinct coordination environments for the two metal centres with different metal-ligand bond distances, while in class III compounds the two metal sites will be indistinguishable at all temperatures. \dagger

Numerous dimanganese complexes having one Mn atom in the +3 oxidation state and the other in the +4 state have been structurally characterized during the past two decades (for a review see Manchanda et al.,

[^0]1995). Many of these complexes have crystallographically indistinguishable Mn centres. For example, complexes of the type $\mathrm{Mn}_{2}^{\mathrm{III}, \mathrm{IV}} \mathrm{O}_{2} L_{4}^{3+}$, where $L=$ bpy or phen (bpy $=2,2^{\prime}$-bipyridine, phen $=1,10$-phenanthroline), may have distinguishable (Plaksin et al., 1972; Manchanda et al., 1994; Jensen et al., 1995) or indistinguishable (Stebler et al., 1986) Mn sites depending on the counter anion. On the other hand, spectroscopic and chemical evidence suggests class II behaviour for all $\mathrm{Mn}^{\text {III,IV }}$ complexes (for a review see Wieghardt, 1989). In all cases of indistinguishable Mn centres, the mixedvalent cation is found to be situated on a crystallographic symmetry element. In an important paper Stebler et al. (1986) analysed this problem in $\left[\mathrm{Mn}_{2} \mathrm{O}_{2}(\text { phen })_{4}\right]\left(\mathrm{PF}_{6}\right)_{3}$ using atomic displacement data and concluded that crystallographic indistinguishability arises because of disorder about the symmetry element imposed by the space group. Since the publication of this work several other $\mathrm{Mn}^{\text {III,IV }}$ complexes have been reported (Wieghardt et al., 1987; Oki et al., 1990; Goodson et al., 1990, 1992). The present paper reports the structure of $\left[\mathrm{Mn}_{2}{ }^{\text {III,IV }} \mathrm{O}_{2}(\text { bpy })_{4}\right]\left[\mathrm{Ce}^{\mathrm{III}}\left(\mathrm{NO}_{3}\right)_{6}\right] .5 \mathrm{H}_{2} \mathrm{O}$, (1), based on low-temperature (132 K) data. The cation of (1) has been structurally characterized twice before: in the perchlorate salt by Plaksin et al. (1972) and in the tetrafluoroborate salt by Jensen et al. (1995). In both cases geometrically distinct Mn centres were observed. However, in (1) the Mn atoms are not crystallographically distinguishable. Analysis of the atomic displacement data indicates disorder about the monoclinic symmetry axis. The reasons for the widespread occurrence of disorder in $\mathrm{Mn}^{\text {III,IV }}$ complexes are examined based on the Jahn-Teller nature of Mn^{3+} and the strong trans influence of the oxo ligands.

2. Experimental

$\left.\left[\mathrm{Mn}_{2} \mathrm{O}_{2} \text { (bpy }\right)_{4}\right]\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$, (1), was prepared as follows. To a solution of $\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.508 \mathrm{~g}$, $2.07 \mathrm{mmol})$ and $2,2^{\prime}$-bipyridine ($0.648 \mathrm{~g}, 4.15 \mathrm{mmol}$) in methanol $(5 \mathrm{ml})$, a solution of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}(2.16 \mathrm{~g}$, 3.94 mmol) in methanol (10 ml) was added dropwise with stirring. The solution initially turned yellow and on further addition a green solution was obtained, which was allowed to stand for 10 min . The green precipitate
that formed was filtered, dried under vacuum and recrystallized from water to give dark green rectangular rod-shaped crystals. Yield: 0.770 g ($0.562 \mathrm{mmol}, 54 \%$). IR (KBr disc, cm^{-1}): 3383 (b), 3088 (w), 1605 (s), 1566 (w), 1445 (vs), 1314 (vs), 1161 (s), 1111 (w), 1020 (s), 820 (s), 770 (s), 731 (s), 693 (s), 656 (s).

Intensity data were collected at the University of Canterbury, New Zealand. Experimental details are given in Table 1. Data collection, cell refinement and data reduction were carried out using P4 Software (Siemens, 1990). The structure was solved by direct methods with SHELXS86 (Sheldrick, 1990) and refined with SHELXL93 (Sheldrick, 1993).

Based on systematic absences, the space group was either $C c$ or $C 2 / c$. The structure could be solved in both space groups, but attempts to refine it in $C c$ led to instability owing to severe correlations between the two halves of the cation related by the (pseudo) twofold axis. Therefore, the centrosymmetric space group $C 2 / c$ was chosen. This choice, unfortunately, imposes crystallographic symmetry on the cation as well as the anion. H atoms are labelled according to the atom to which they are attached. Non-H atoms were refined anisotropically and all ring H atoms were included in calculated positions using a riding model. The H atoms on water molecules were located from difference maps and refined using bond-length constraints. One of the lattice water molecules, OW1, lies on the twofold axis at a distance of 2.724 (3) \AA from the bridging oxygen O1. The H atoms for this water molecule were located from a Fourier map at a distance of $1 \AA$ from OW1, but were fixed at 0.97 A owing to extreme shortening of the bonds on free refinement. HW1A lies on a twofold axis, while $\mathrm{H} W 1 B$ is disordered about this axis. All H atoms except $\mathrm{H} W 1 A, \mathrm{H} W 1 B, \mathrm{H} W 2 A$ and $\mathrm{H} W 2 B$ were assigned fixed $U_{\text {iso }}$ values 1.5 times the $U_{\text {eq }}$ value of the atom to which they are attached. Yet another water molecule, OW3/ OW4, suffers from positional disorder and was refined with fractional site-occupancy factors at two independent sites. Positional parameters are listed in Table 2 and selected bond distances and angles are given in Table 3. \dagger

3. Results and discussion

3.1. Cation

The $\left[\mathrm{Mn}_{2} \mathrm{O}_{2}(\text { bpy })_{4}\right]^{3+}$ ion is shown in Fig. 1(a) and in Fig. 1(b) a water molecule hydrogen-bonded to one of the bridging O atoms is also shown. Unlike in the previously reported ClO_{4}^{-}(Plaksin et al., 1972) or BF_{4}^{-} (Jensen et al., 1995) salts, in (1) the two Mn atoms are not distinguishable because of the crystallographic twofold axis passing through the two O atoms. Bearing this in mind it is possible to compare the parameters for

[^1]Table 1. Experimental details
Crystal data

Chemical formula	$\left[\mathrm{Mn}_{2} \mathrm{O}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]-$ $\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right] .5 \mathrm{H}_{2} \mathrm{O}$
Chemical formula weight	1368.88
Cell setting	Monoclinic
Space group	$C 2 / c$
$a(\AA \AA)$	$12.940(3)$
$b(\AA \AA)$	$18.060(2)$
$c(\AA)$	$22.544(11)$
$\beta\left({ }^{\circ} \AA\right)$	$96.29(2)$
$V\left(\AA^{3}\right)$	$5237(3)$
Z	4
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.736
$D_{m}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.75
Density measured by	Flotation
Radiation type	Mo K
Wavelength (\AA)	0.71073
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.429
Temperature (K)	$132(2)$
Crystal form	Rectangular rod
Crystal size (mm)	$0.35 \times 0.30 \times 0.26$
Crystal colour	Dark green-black

Data collection
Diffractometer
Data collection method
Absorption correction
$\quad T_{\min }$
$\quad T_{\max }$
No. of measured
No. of independ
No. of observed
Criterion for obs
$R_{\text {int }}$
$\theta_{\max }\left({ }^{\circ}\right)$
Range of h, k, l

No. of standard reflections Frequency of standard reflections Intensity decay (\%)

Refinement
Refinement on
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right] \quad 0.0358$
$w R\left(F^{2}\right) \quad 0.0783$
S 1.136
No. of reflections used in refinement 5645
No. of parameters used
Weighting scheme
$(\Delta / \sigma)_{\text {max }}$
$\Delta \rho_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$
$\Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Extinction method
Source of atomic scattering factors

409
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0342 P)^{2}\right.$
$+13.2986 P]$ where $P=\left(F_{o}{ }^{2}\right.$
$\left.+2 F_{c}{ }^{2}\right) / 3$
Siemens $P 4$
$\omega-2 \theta$ scans
Semi-empirical (North et al., 1968)
0.257
0.327

6034
6021
4877
$I>2 \sigma(I)$
0.0281
27.5
$-16 \rightarrow h \rightarrow 16$
$0 \rightarrow k \rightarrow 23$
$0 \rightarrow l \rightarrow 29$
3
Every 100 reflections
0
F^{2}
-0.157 for y of $\mathrm{HW} 3 A,<0.03$
for all non-H atoms
0.925
-0.589
None
International Tables for Crystallography (Vol. C, Tables
4.2.6.8 and 6.1.1.4)
(1) with those of the previous reports and its phen analogue. There are two main factors which influence the geometry of a dioxo-bridged $\mathrm{Mn}^{\text {III,IV }}$ complex:
(i) The $\mathrm{Mn}^{\text {III }}$ centre is susceptible to the Jahn-Teller effect, which usually manifests itself as a tetragonal elongation (Reddy et al., 1996; Swarnabala et al., 1994). The elongation direction will be perpendicular to the $\mathrm{Mn}_{2} \mathrm{O}_{2}$ plane.
(ii) The bonds opposite the oxo ligand for both Mn centres experience a strong trans influence leading to their elongation. This effect is more pronounced for $\mathrm{Mn}^{\mathrm{IV}}$, which has the shorter $\mathrm{Mn}-\mathrm{O}$ distance.

The net result is that for the $\mathrm{Mn}^{\mathrm{III}}$ site the axial $\mathrm{Mn}-$ N bonds are longer than the corresponding equatorial bonds, while the reverse is true for the $\mathrm{Mn}^{\text {IV }}$ site. This is borne out by the average bond-length differences shown
in Table 4. Similar differences have also been observed for $\mathrm{Mn}^{\text {III,IV }}$ complexes containing other ligands (Glerup et al., 1994; Frapart et al., 1996). As expected, for the crystallographically averaged structures the axialequatorial difference is less, but still significant.

From a detailed analysis of the atomic displacement parameters for $\left[\mathrm{Mn}_{2} \mathrm{O}_{2}(\text { phen })_{4}\right]\left(\mathrm{PF}_{6}\right)_{3} \cdot \mathrm{CH}_{3} \mathrm{CN}$ it has been shown that the averaged structure results from a dynamic or static disorder about a crystallographic symmetry element, and not from any electron delocalization (Stebler et al., 1986). In this analysis, the difference displacement parameter $\Delta U(z)$ is calculated for the axial and equatorial $\mathrm{Mn}-\mathrm{N}$ bonds using the diag-

(a)

(b)

(c)

Fig. 1. ORTEPII (Johnson, 1976) view of (1) (50% probability ellipsoids). (a) The $\left[\mathrm{Mn}_{2} \mathrm{O}_{2} \text { (bpy) }\right)_{4}{ }^{3+}$ cation [symmetry code: (i) $\left.-x, y,-z+\frac{1}{2}\right]$. (b) The cation showing hydrogen bonding between the oxo group and a lattice water molecule [symmetry code: (i) $-x, y,-z+\frac{1}{2}$]. The disordered H atoms are connected by hollow bonds. (c) The $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}^{3-}$ anion [symmetry code: (ii) $-x,-y,-z$].

Table 2. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {eq }}$
Mn	0.10205 (3)	-0.31120 (2)	0.27211 (2)	0.01864 (8)
O1	0	-0.37795 (13)	1/4	0.0236 (6)
O2	0	-0.24494 (13)	1/4	0.0231 (6)
N1	0.1644 (2)	-0.29545 (12)	0.18985 (9)	0.0241 (5)
N2	0.2151 (2)	-0.39399 (11)	0.27394 (9)	0.0218 (5)
N3	0.2023 (2)	-0.23294 (12)	0.31588 (10)	0.0247 (5)
N4	0.0801 (2)	-0.32638 (12)	0.36371 (10)	0.0279 (5)
C1	0.1366 (2)	-0.24126 (15)	0.15081 (12)	0.0288 (6)
C2	0.1768 (2)	-0.2361 (2)	0.09620 (13)	0.0341 (7)
C3	0.2476 (2)	-0.2889 (2)	0.08194 (13)	0.0366 (7)
C4	0.2766 (2)	-0.3455 (2)	0.12229 (12)	0.0306 (6)
C5	0.3286 (2)	-0.4612 (2)	0.21593 (13)	0.0332 (7)
C6	0.3474 (2)	-0.5126 (2)	0.26134 (13)	0.0368 (7)
C7	0.2997 (2)	-0.5039 (2)	0.31275 (12)	0.0326 (6)
C8	0.2352 (2)	-0.4442 (2)	0.31778 (12)	0.0272 (6)
C9	0.2615 (2)	-0.40292 (14)	0.22310 (11)	0.0228 (5)
C10	0.2340 (2)	-0.34700 (14)	0.17646 (11)	0.0233 (6)
C11	0.2668 (2)	-0.1883 (2)	0.28910 (13)	0.0323 (7)
C12	0.3204 (2)	-0.1306 (2)	0.31851 (14)	0.0363 (7)
C13	0.3070 (2)	-0.1175 (2)	0.37704 (14)	0.0339 (7)
C14	0.2419 (2)	-0.1634 (2)	0.40556 (13)	0.0296 (6)
C15	0.1064 (2)	-0.2737 (2)	0.46118 (13)	0.0344 (7)
C16	0.0441 (2)	-0.3279 (2)	0.48282 (15)	0.0407 (8)
C17	0.0018 (2)	-0.3818 (2)	0.44388 (15)	0.0390 (7)
C18	0.0210 (2)	-0.3794 (2)	0.38509 (14)	0.0341 (7)
C19	0.1242 (2)	-0.27452 (14)	0.40150 (12)	0.0259 (6)
C20	0.1917 (2)	-0.22138 (15)	0.37445 (12)	0.0247 (6)
Ce	0	0	0	0.01991 (4)
N5	0.0230 (2)	0.07341 (12)	-0.11877 (9)	0.0235 (5)
O3	0.01358 (14)	0.00350 (10)	-0.11422 (8)	0.0265 (4)
O4	0.03210 (15)	0.10318 (11)	-0.16699 (8)	0.0306 (5)
O5	0.02212 (14)	0.11081 (10)	-0.07128 (8)	0.0263 (4)
N6	-0.2367 (2)	0.02987 (13)	-0.01468 (10)	0.0289 (5)
O6	-0.19677 (14)	-0.00094 (12)	0.03188 (8)	0.0325 (4)
O7	-0.3317 (2)	0.03582 (15)	-0.02636 (11)	0.0506 (7)
O8	-0.17629 (14)	0.05590 (11)	-0.05042 (9)	0.0311 (5)
N7	0.0548 (2)	0.14382 (13)	0.06822 (10)	0.0312 (5)
O9	-0.03740 (15)	0.12916 (10)	0.04789 (9)	0.0305 (4)
O10	0.0757 (2)	0.19869 (13)	0.09999 (11)	0.0530 (6)
O11	0.12523 (14)	0.10117 (11)	0.05393 (9)	0.0322 (5)
OW1	0	-0.52877 (9)	1/4	0.0433 (8)
OW2	-0.0493 (2)	0.26400 (14)	0.19167 (8)	0.0646 (8)
OW3 \dagger	-0.4372 (2)	0.0877 (2)	-0.13899 (10)	0.0566 (14)
OW4 \ddagger	-0.3942 (2)	0.1105 (2)	-0.15369 (14)	0.069 (3)

\dagger Site occupancy $=0.611 . \quad \ddagger$ Site occupancy $=0.389$.
onalized displacement tensor U of the Mn and N atoms $[\Delta U(z)=U(\mathrm{~N}, z)-U(\mathrm{Mn}, z)$, where z is the bond direction]. In an ordered structure, the quantity $\Delta U^{1 / 2}(z)$ is a measure of the difference in the intramolecular vibration amplitudes of the metal and ligand atoms and is usually $\sim 0.05 \AA$ (Chandrasekhar \& Bürgi, 1984; Ammeter et al., 1979). Large deviations from this value can be caused by either static or dynamic disorder of the structure. The $\Delta U^{1 / 2}(z)$ values for the present compound are given in Table 4. It is worth emphasizing that the greater trans influence of the oxo ligands attached to $\mathrm{Mn}^{\mathrm{IV}}$ smears out the expected differences for the equatorial $\mathrm{Mn}-\mathrm{N}$ bond distances for the $3+$ and

Table 3. Selected geometric parameters ($\left({ }^{(},{ }^{\circ}\right)$

$\mathrm{Mn}-\mathrm{O} 2$	$1.811(2)$	$\mathrm{Ce}-\mathrm{O} 3$	$2.601(2)$
$\mathrm{Mn}-\mathrm{O} 1$	$1.817(2)$	$\mathrm{Ce}-\mathrm{O} 5$	$2.602(2)$
$\mathrm{Mn}-\mathrm{N} 2$	$2.089(2)$	$\mathrm{Ce}-\mathrm{O} 8$	$2.636(2)$
$\mathrm{Mn}-\mathrm{N} 3$	$2.091(2)$	$\mathrm{Ce}-\mathrm{O} 9$	$2.637(2)$
$\mathrm{Mn}-\mathrm{N} 1$	$2.121(2)$	$\mathrm{Ce}-\mathrm{O} 11$	$2.648(2)$
$\mathrm{Mn}-\mathrm{N} 4$	$2.133(3)$	$\mathrm{Ce}-\mathrm{O} 6$	$2.720(2)$
$\mathrm{Mn}-\mathrm{Mn}$			
	$2.7188(9)$		
$\mathrm{O} 2-\mathrm{Mn}-\mathrm{O} 1$	$82.92(8)$	$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 2$	$90.97(8)$
$\mathrm{O} 2-\mathrm{Mn}-\mathrm{N} 3$	$94.53(8)$	$\mathrm{N} 2-\mathrm{Mn}-\mathrm{N} 3$	$94.46(8)$
$\mathrm{O} 2-\mathrm{Mn}-\mathrm{N} 1$	$90.36(6)$	$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 1$	$100.59(6)$
$\mathrm{N} 2-\mathrm{Mn}-\mathrm{N} 1$	$77.34(8)$	$\mathrm{N} 3-\mathrm{Mn}-\mathrm{N} 1$	$92.66(9)$
$\mathrm{O} 2-\mathrm{Mn}-\mathrm{N} 4$	$100.41(6)$	$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 4$	$90.59(6)$
$\mathrm{N} 2-\mathrm{Mn}-\mathrm{N} 4$	$93.23(8)$	$\mathrm{N} 3-\mathrm{Mn}-\mathrm{N} 4$	$76.80(9)$
$\mathrm{Mn}-\mathrm{O} 1-\mathrm{Mn}$	$96.87(11)$	$\mathrm{Mn}-\mathrm{O} 2-\mathrm{Mn}$	$97.29(1)$
$\mathrm{O} 3-\mathrm{Ce}-\mathrm{O} 5$	$49.15(6)$	$\mathrm{O} 9-\mathrm{Ce}-\mathrm{O} 11$	$48.10(6)$
$\mathrm{O} 8-\mathrm{Ce}-\mathrm{O} 6$	$47.58(6)$		

Symmetry code: (i) $-x, y, \frac{1}{2}-z$.
$4+$ oxidation states to a great extent. On the other hand, the Jahn-Teller effect magnifies this difference for the axial bonds. Denoting, for example, the $\mathrm{Mn}^{\mathrm{II}}-\mathrm{N}_{\text {axial }}$ bond distance as $\mathrm{N}_{\mathrm{ax}}($ III $), \mathrm{N}_{\mathrm{ax}}($ III $)-\mathrm{N}_{\mathrm{ax}}($ IV $)$ lies in the range $0.19-0.21 \AA$ for the three complexes with distinguishable sites, while the range for $\mathrm{N}_{\mathrm{eq}}($ III $)-\mathrm{N}_{\mathrm{eq}}(\mathrm{IV})$ is only $0.03-0.06 \AA$. The same trend is observed on comparing the $\Delta U^{1 / 2}(z)$ values for the disordered structure. The values along the axial bonds are in the range $0.09-0.14 \AA$. Along the equatorial bonds the values lie in the range $0.05-0.06 \AA$, and are in the range normally seen in the absence of any disorder. Therefore, to build a simplified picture of disorder in this type of complex, one need consider only the axial bonds.

The three resulting possibilities for cation disorder in a monoclinic crystal are shown schematically in Fig. 2. In Fig. 2(a) the symmetry element involved is the monoclinic symmetry axis, normal to the $\mathrm{Mn}_{2} \mathrm{O}_{2}$ mean plane, while in Fig. 2(b) it is the inversion centre and in Fig. $2(c)$ the b axis passes through the two O atoms. Of the seven previously reported disordered structures two (Stebler et al., 1986; Wieghardt et al., 1987) belong to type (a) and five (Oki et al., 1990; Goodson et al., 1990, 1992) to type (b). In (c) the symmetry axis is perpendicular to the axial (disorder) direction of the molecule. The present structure belongs to this category. This mode is obtained here because of the presence of a water molecule hydrogen-bonded to only one of the O atoms. The other modes (a or b) in this situation would have meant a two-dimensional disorder in the lattice which is probably energetically costlier. \dagger The $\mathrm{Mn}_{2} \mathrm{O}_{2}$ plane is strictly planar, while in the ordered structures

[^2]Table 4. Distortion parameters (\AA) and difference displacement parameters (\AA) for dioxo-bridged $\left[M_{2} O_{2} L_{4}\right]^{3+}$ systems

Distortion parameters are bond-length differences for $\mathrm{Mn}-\mathrm{N}$ bonds where, for example, N_{ax} (III) represents the $\mathrm{Mn}^{\mathrm{III}}-\mathrm{N}_{\mathrm{axial}}$ bond distance. Difference displacement parameters are along $\mathrm{Mn}-\mathrm{N}$ bonds for averaged structures calculated as given in Stebler et al. (1986). The values are averages for chemically equivalent bonds in a structure. The two standard deviations in parentheses are calculated according to $\sigma^{2}\left[f\left(p_{1} \ldots\right)\right]=$ $\Sigma\left(\partial f / \partial p_{i}\right)^{2} \sigma_{i}^{2}$ and $\sigma_{\text {mean }}^{2}=\Sigma\left(x_{i}-\bar{x}\right)^{2} /(n-1)$, respectively.

Compounds with distinct Mn sites

	$\mathrm{N}_{\mathrm{ax}}(\mathrm{III})-\mathrm{N}_{\mathrm{eq}}(\mathrm{IIII})$	$\mathrm{N}_{\mathrm{ax}}(\mathrm{IV})-\mathrm{N}_{\mathrm{eq}}(\mathrm{IV})$	$\mathrm{N}_{\mathrm{ax}}($ III $)-\mathrm{N}_{\mathrm{ax}}(\mathrm{IV})$	$\mathrm{N}_{\mathrm{eq}}(\mathrm{III})-\mathrm{N}_{\mathrm{eq}}($ IV $)$
$\left[\mathrm{Mn}_{2} \mathrm{O}_{2}(\text { bpy })_{4}\right]\left(\mathrm{ClO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{(a)}$	$0.085(7,14)$	$-0.053(7,9)$	$0.195(7,16)$	$0.057(7,4)$
$\left[\mathrm{Mn}_{2} \mathrm{O}_{2}(\text { bpy })_{4}\right]\left(\mathrm{BF}_{4}\right)_{3} \cdot 2 \cdot 8 \mathrm{H}_{2} \mathrm{O}^{(b)}$	$0.089(4,6)$	$-0.070(4,20)$	$0.207(4,11)$	$0.048(4,18)$
$\left[\mathrm{Mn}_{2} \mathrm{O}_{2}(\text { phen })_{4}\right]\left(\mathrm{ClO}_{4}\right)_{3} \cdot 2 \mathrm{CH}_{3} \mathrm{COOH} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{(c)}$	$0.107(6,14)$	$-0.061(6,12)$	$0.195(6,14)$	

Compounds with equivalent Mn sites
$\left[\mathrm{Mn}_{2} \mathrm{O}_{2}(\mathrm{bpy})_{4}\right]\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right] .5 \mathrm{H}_{2} \mathrm{O}^{(d)}$

$\mathrm{N}_{\mathrm{ax}}-\mathrm{N}_{\mathrm{eq}}$	$\Delta U^{1 / 2}(z) \mathrm{N}_{\mathrm{ax}}$
$0.037(2,9)$	$0.093(5) ; 0.136(5)$
$0.023(2,21)$	$0.116(10)$

$$
\begin{aligned}
& \Delta U^{1 / 2}(z) \mathrm{N}_{\mathrm{eq}} \\
& 0.050(5) ; 0.060(5) \\
& 0.037(33)
\end{aligned}
$$

References: (a) Plaksin et al. (1972); (b) Jensen et al. (1995); (c) Manchanda et al. (1994); (d) this work; (e) Stebler et al. (1986).
small deviations $(\sim 0.03 \AA)$ from planarity are seen. The equatorial N atoms show large deviations $(\pm 0.48$, $\pm 0.49 \AA$) from this plane; this has also been observed for the ordered structures.

3.2. Anion

$\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}^{3-}$ has a distorted icosahedral structure with Ce located on a crystallographic inversion centre (Fig. $1 c)$. Two of the three independent NO_{3}^{-}ions conform closely to the symmetric chelating mode [average $\mathrm{Ce}-$ O 2.622 (2) \AA] , while the third NO_{3}^{-}ion shows considerable asymmetry in chelation $[\mathrm{Ce}-\mathrm{O} \quad 2.720$ (2), 2.636 (2) \AA]. This ion has been previously characterized in $\mathrm{Ce}_{2} \mathrm{Mg}_{3}\left(\mathrm{NO}_{3}\right)_{12} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ (Zalkin et al., 1963) and more recently in $\mathrm{K}_{3} \mathrm{Ce}_{2}\left(\mathrm{NO}_{3}\right)_{9}$ (Guillou, Auffrédic \& Louër, 1995). The latter compound has a three-dimensional network of irregular icosahedra linked by NO_{3}^{-}ions. The $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}^{3-}$ ion in all these compounds is more distorted than the $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}^{2-}$ ion in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}$ (Beineke \& Delgaudio, 1968) and $\mathrm{K}_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}$ (Guillou, Louër et
al., 1995). It is tempting to ascribe this difference to the Jahn-Teller effect in the $\mathrm{Ce}^{\mathrm{III}}$ complex ion. However, the weak distortions expected for the f^{1} configuration might be comparable in magnitude to distortions arising from hydrogen bonding and other lattice perturbations.

3.3. Hydrogen bonding

One lattice water molecule forms a strong hydrogen bond with an O atom of the dioxo bridge [O1 $\cdots \mathrm{H} W 1 A$ 1.754 (3), O1 \cdots OW1 2.724 (3) Å], while another water molecule forms a hydrogen-bonded network $\left[\mathrm{O} W 2 \cdots \mathrm{H} W 2 A^{\mathrm{i}} 1.933\right.$ (4), OW2 $\cdot \mathrm{O} W 2^{\mathrm{i}} 2.795$ (3) \AA; symmetry code: (i) $\left.-x, y,-z+\frac{1}{2}\right]$ and also interacts with the anion $[\mathrm{O} 10 \cdots \mathrm{HW} 2 \mathrm{~B} \quad 2.071$ (7), O10 $\cdot \mathrm{OW} 2$ 3.002 (3) \AA $]$. The third water molecule is disordered and interacts with OW 1 as well as the O 7 atom of the anion. There appear to be no significant contacts between the anion and the $\mathrm{Mn}^{\text {IIIIIV }}$ complex ion except via the hydrogen-bond network involving two water molecules (OW1, OW4).

Fig. 2. Simplified model of disorder of an $\left[\mathrm{Mn}_{2} \mathrm{O}_{2} L_{4}\right]^{3+}$ ion in monoclinic crystals. The horizontal line represents the $\mathrm{Mn}_{2} \mathrm{O}_{2}$ core while the vertical lines denote the axial direction of the coordination 'octahedra'. Two adjacent unit cells are shown in projection down the c axis for (a) and (b), and down the b axis for (c). For (c) the monoclinic angle is taken to be 90° for convenience. The disorder is about an inversion centre in (b) while the other two cases correspond to disorder about the b axis.

4. Conclusion

The widespread occurrence of dioxo-bridged $\mathrm{Mn}^{\mathrm{III}, \mathrm{IV}}$ complexes with averaged geometries is a consequence of crystallographic disorder. While the energetics of disorder will vary from system to system and will also depend upon the anion packing, it is reasonable to expect that the difference between the metric parameters at the two Mn atoms will play an important role. The combined effect of Jahn-Teller elongation (at $\mathrm{Mn}^{\mathrm{III}}$) and the trans influence of the oxo ligands makes this difference more pronounced along the axial coordination direction than in the $\mathrm{Mn}_{2} \mathrm{O}_{2}$ plane. This seems to favour a disorder about an inversion centre or a twofold axis perpendicular to the $\mathrm{Mn}_{2} \mathrm{O}_{2}$ plane. The hydrogen bonding with a lattice water molecule leads to a novel type of disorder in (1) wherein the crystallographic twofold axis passes through the dioxo O atoms.

We thank Professor W. T. Robinson, University of Canterbury, New Zealand, for collecting the X-ray data for (1). DR thanks the University Grants Commission, New Delhi, for the award of a fellowship.

References

Ammeter, J. H., Bürgi, H. B., Gamp, E., Meyer-Sandrin, V. \& Jensen, W. P. (1979). Inorg. Chem. 18, 733-751.
Beineke, T. A. \& Delgaudio, J. (1968). Inorg. Chem. 7, 715-721.
Chandrasekhar, K. \& Bürgi, H. B. (1984). Acta Cryst. B40, 387397.

Frapart, Y.-M., Boussac, A., Albach, R., Mallart, E. A., Delroisse, M., Verlhac, J.-B., Blondin, G., Girerd, J. J., Guilhem, J., Cesario, M., Rutherford, A. W. \& Lexa, D. (1996). J. Am. Chem. Soc. 118, 2669-2678.

Furholz, U., Bürgi, H.-B., Wagner, F. E., Stebler, A., Ammeter, J. H., Krausz, E., Clark, R. J. H., Stead, M. J. \& Ludi, A. (1984). J. Am. Chem. Soc. 106, 121-123.

Glerup, J., Goodson, P. A., Hazell, A., Hazell, R., Hodgson, D. J., McKenzie, C. J., Michelsen, K., Rychlewska, U. \& Toftlund, H. (1994). Inorg. Chem. 33, 4105-4111.

Goodson, P. A., Hodgson, D. J., Glerup, J., Michelsen, K. \& Weihe, H. (1992). Inorg. Chim. Acta, 197, 141-147.
Goodson, P. A., Hodgson, D. J. \& Michelsen, K. (1990). Inorg. Chim. Acta, 172, 49-57.
Guillou, N., Auffrédic, J. P. \& Louër, D. (1995). Acta Cryst. C51, 1032-1034.
Guillou, N., Louër, M., Auffrédic, J. P. \& Louër, D. (1995). Acta Cryst. C51, 1029-1032.
Jensen, A. F., Su, Z., Hansen, N. K. \& Larsen, F. K. (1995). Inorg. Chem. 34, 4244-4252.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Manchanda, R., Brudvig, G. W. \& Crabtree, R. H. (1995). Coord. Chem. Rev. 144, 1-38.
Manchanda, R., Brudvig, G. W., de Gala, S. \& Crabtree, R. H. (1994). Inorg. Chem. 33, 5157-5160.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Oki, A. R., Glerup, J. \& Hodgson, D. J. (1990). Inorg. Chem. 29, 2435-2441.
Plaksin, P. M., Stoufer, R. C., Mathew, M. \& Palenik, G. J. (1972). J. Am. Chem. Soc. 94, 2121-2122.

Reddy, K. R., Rajasekharan, M. V. \& Sukumar, S. (1996). Polyhedron, 15, 4161-4168.
Robin, M. B. \& Day, P. (1967). Adv. Inorg. Chem. Radiochem. 10, 247-422.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1990). P4 Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stebler, M., Ludi, A. \& Bürgi, H. B. (1986). Inorg. Chem. 25, 4743-4750.
Swarnabala, G., Reddy, K. R., Tirunagar, J. \& Rajasekharan, M. V. (1994). Transition Met. Chem. 19, 506-508.

Wieghardt, K. (1989). Angew. Chem. Int. Ed. Engl. 28, 11531172.

Wieghardt, K., Bossek, U., Zsolnai, L., Huttner, G., Blondin, G., Girerd, J.-J. \& Babonneau, F. (1987). J. Chem. Soc. Chem. Comтии. pp. 651-653.
Zalkin, A., Forrester, J. D. \& Templeton, D. H. (1963). J. Chem. Phys. 39, 2881-2891.

[^0]: \dagger Classification of a given complex using the Robin \& Day scheme is often not a trivial problem. The interesting case of the Creutz-Taube complex $\left[\mu\right.$-pyrazine-bis(pentaammineruthenium) ${ }^{5+}$, studied using several different techniques, is discussed by Furholz et al. (1984).

[^1]: \dagger Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS0004). Services for accessing these data are described at the back of the journal.

[^2]: \dagger In $\left[\mathrm{Mn}_{2} \mathrm{O}_{2} L_{2}\right]\left(\mathrm{ClO}_{4}\right)_{3} . \mathrm{H}_{2} \mathrm{O}$, where $L=N, N^{\prime}$-dimethyl- N, N^{\prime}-bis(imi-dazol-4-ylmethyl)ethane-1,2-diamine (Frapart et al., 1996), the monoclinic symmetry axis passes through the two Mn atoms. The presence of only one water molecule (which is said to be close to one of the dioxo O atoms) implies a disorder about the $\mathrm{Mn}-\mathrm{Mn}$ axis, which, nevertheless, does not lead to averaging of the oxidation states.

